Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649414

RESUMO

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.

2.
Proc Natl Acad Sci U S A ; 120(42): e2220029120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812700

RESUMO

Voltage-gated potassium channels (Kv) are tetrameric membrane proteins that provide a highly selective pathway for potassium ions (K+) to diffuse across a hydrophobic cell membrane. These unique voltage-gated cation channels detect changes in membrane potential and, upon activation, help to return the depolarized cell to a resting state during the repolarization stage of each action potential. The Kv3 family of potassium channels is characterized by a high activation potential and rapid kinetics, which play a crucial role for the fast-spiking neuronal phenotype. Mutations in the Kv3.1 channel have been shown to have implications in various neurological diseases like epilepsy and Alzheimer's disease. Moreover, disruptions in neuronal circuitry involving Kv3.1 have been correlated with negative symptoms of schizophrenia. Here, we report the discovery of a novel positive modulator of Kv3.1, investigate its biophysical properties, and determine the cryo-EM structure of the compound in complex with Kv3.1. Structural analysis reveals the molecular determinants of positive modulation in Kv3.1 channels by this class of compounds and provides additional opportunities for rational drug design for the treatment of associated neurological disorders.


Assuntos
Neurônios , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Humanos , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação/fisiologia , Proteínas de Membrana/metabolismo
3.
Sci Rep ; 12(1): 11109, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773455

RESUMO

Despite remarkable progress, mainly due to the development of LCP and 'bicelle' crystallization, lack of structural information remains a bottleneck in membrane protein (MP) research. A major reason is the absence of complete understanding of the mechanism of crystallization. Here we present small-angle scattering studies of the evolution of the "bicelle" crystallization matrix in the course of MP crystal growth. Initially, the matrix corresponds to liquid-like bicelle state. However, after adding the precipitant, the crystallization matrix transforms to jelly-like state. The data suggest that this final phase is composed of interconnected ribbon-like bilayers, where crystals grow. A small amount of multilamellar phase appears, and its volume increases concomitantly with the volume of growing crystals. We suggest that the lamellar phase surrounds the crystals and is critical for crystal growth, which is also common for LCP crystallization. The study discloses mechanisms of "bicelle" MP crystallization and will support rational design of crystallization.


Assuntos
Proteínas de Membrana , Cristalização , Proteínas de Membrana/química , Espalhamento a Baixo Ângulo
4.
Protein Eng Des Sel ; 332020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33341882

RESUMO

Single-domain antibody fragments known as VHH have emerged in the pharmaceutical industry as useful biotherapeutics. These molecules, which are naturally produced by camelids, share the characteristics of high affinity and specificity with traditional human immunoglobulins, while consisting of only a single heavy chain. Currently, the most common method for generating VHH is via animal immunization, which can be costly and time-consuming. Here we describe the development of a synthetic VHH library for in vitro selection of single domain binders. We combine structure-based design and next-generation sequencing analysis to build a library with characteristics that closely mimic the natural repertoire. To validate the performance of our synthetic library, we isolated VHH against three model antigens (soluble mouse PD-1 ectodomain, amyloid-ß peptide, and MrgX1 GPCR) of different sizes and characteristics. We were able to isolate diverse binders targeting different epitopes with high affinity (as high as 5 nM) against all three targets. We then show that anti-mPD-1 binders have functional activity in a receptor blocking assay.


Assuntos
Especificidade de Anticorpos , Antígenos/química , Epitopos/química , Biblioteca de Peptídeos , Engenharia de Proteínas , Anticorpos de Domínio Único , Animais , Antígenos/imunologia , Camelídeos Americanos/genética , Camelídeos Americanos/imunologia , Camelus/genética , Camelus/imunologia , Epitopos/imunologia , Camundongos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Relação Estrutura-Atividade
5.
IUCrJ ; 7(Pt 6): 976-984, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209312

RESUMO

Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase; however, like most techniques, it has limitations. Here we attempt to address some of these limitations related to the use of a vacuum chamber and the need for attenuation of the XFEL beam, in order to further improve the efficiency of this method. Using an optimized SFX experimental setup in a helium atmosphere, the room-temperature structure of the adenosine A2A receptor (A2AAR) at 2.0 Šresolution is determined and compared with previous A2AAR structures determined in vacuum and/or at cryogenic temperatures. Specifically, the capability of utilizing high XFEL beam transmissions is demonstrated, in conjunction with a high dynamic range detector, to collect high-resolution SFX data while reducing crystalline material consumption and shortening the collection time required for a complete dataset. The experimental setup presented herein can be applied to future SFX applications for protein nanocrystal samples to aid in structure-based discovery efforts of therapeutic targets that are difficult to crystallize.

6.
Nature ; 584(7820): 298-303, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32555460

RESUMO

Metabotropic γ-aminobutyric acid receptors (GABAB) are involved in the modulation of synaptic responses in the central nervous system and have been implicated in neuropsychological conditions that range from addiction to psychosis1. GABAB belongs to class C of the G-protein-coupled receptors, and its functional entity comprises an obligate heterodimer that is composed of the GB1 and GB2 subunits2. Each subunit possesses an extracellular Venus flytrap domain, which is connected to a canonical seven-transmembrane domain. Here we present four cryo-electron microscopy structures of the human full-length GB1-GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABAB. Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signalling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface.


Assuntos
Microscopia Crioeletrônica , Receptores de GABA-B/química , Receptores de GABA-B/ultraestrutura , Regulação Alostérica/efeitos dos fármacos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação/efeitos dos fármacos , Agonistas dos Receptores de GABA-B/química , Agonistas dos Receptores de GABA-B/metabolismo , Agonistas dos Receptores de GABA-B/farmacologia , Humanos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Receptores de GABA-B/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
7.
Structure ; 28(5): 540-547.e3, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142641

RESUMO

Francisella tularensis is the causative agent for the potentially fatal disease tularemia. The lipoprotein Flpp3 has been identified as a virulence determinant of tularemia with no sequence homology outside the Francisella genus. We report a room temperature structure of Flpp3 determined by serial femtosecond crystallography that exists in a significantly different conformation than previously described by the NMR-determined structure. Furthermore, we investigated the conformational space and energy barriers between these two structures by molecular dynamics umbrella sampling and identified three low-energy intermediate states, transitions between which readily occur at room temperature. We have also begun to investigate organic compounds in silico that may act as inhibitors to Flpp3. This work paves the road to developing targeted therapeutics against tularemia and aides in our understanding of the disease mechanisms of tularemia.


Assuntos
Antibacterianos/química , Francisella tularensis , Lipoproteínas/química , Antibacterianos/farmacologia , Cristalografia por Raios X/métodos , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos/métodos , Francisella tularensis/química , Francisella tularensis/patogenicidade , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lasers , Lipoproteínas/antagonistas & inibidores , Lipoproteínas/genética , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Tularemia/tratamento farmacológico , Fatores de Virulência/química
8.
Nat Commun ; 10(1): 5573, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811124

RESUMO

Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. While selective inhibition of CysLT1R has been used for treating asthma and associated diseases for over two decades, CysLT2R has recently started to emerge as a potential drug target against atopic asthma, brain injury and central nervous system disorders, as well as several types of cancer. Here, we describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists. The reported structures together with the results of comprehensive mutagenesis and computer modeling studies shed light on molecular determinants of CysLTR ligand selectivity and specific effects of disease-related single nucleotide variants.


Assuntos
Mutação , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Animais , Asma/genética , Asma/metabolismo , Simulação por Computador , Cristalografia por Raios X , Células HEK293 , Humanos , Leucotrieno D4/metabolismo , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese , Conformação Proteica , Engenharia de Proteínas , Receptores de Leucotrienos/efeitos dos fármacos , Células Sf9
9.
IUCrJ ; 6(Pt 6): 1106-1119, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709066

RESUMO

Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein. The method was applied to the human ß2-adrenergic receptor, resulting in eight room-temperature co-crystal structures with six different ligands, including previously unreported structures with carvedilol and propranolol. The generality of the proposed method was tested with three other receptors. This approach has the potential to enable SBDD for GPCRs and other difficult-to-crystallize membrane proteins.

10.
Sci Adv ; 5(10): eaax2518, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31633023

RESUMO

The G protein-coupled cysteinyl leukotriene receptor CysLT1R mediates inflammatory processes and plays a major role in numerous disorders, including asthma, allergic rhinitis, cardiovascular disease, and cancer. Selective CysLT1R antagonists are widely prescribed as antiasthmatic drugs; however, these drugs demonstrate low effectiveness in some patients and exhibit a variety of side effects. To gain deeper understanding into the functional mechanisms of CysLTRs, we determined the crystal structures of CysLT1R bound to two chemically distinct antagonists, zafirlukast and pranlukast. The structures reveal unique ligand-binding modes and signaling mechanisms, including lateral ligand access to the orthosteric pocket between transmembrane helices TM4 and TM5, an atypical pattern of microswitches, and a distinct four-residue-coordinated sodium site. These results provide important insights and structural templates for rational discovery of safer and more effective drugs.


Assuntos
Antiasmáticos/metabolismo , Receptores de Leucotrienos/metabolismo , Antiasmáticos/química , Sítios de Ligação , Cromonas/química , Cromonas/metabolismo , Cristalografia por Raios X , Humanos , Indóis , Antagonistas de Leucotrienos/química , Antagonistas de Leucotrienos/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Fenilcarbamatos , Estrutura Terciária de Proteína , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sódio/química , Sódio/metabolismo , Sulfonamidas , Compostos de Tosil/química , Compostos de Tosil/metabolismo
11.
IUCrJ ; 6(Pt 3): 412-425, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098022

RESUMO

Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Šusing 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.

12.
13.
Nature ; 569(7755): 284-288, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019306

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Assuntos
Elétrons , Lasers , Modelos Moleculares , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Sequência de Aminoácidos , Antidepressivos/química , Antidepressivos/metabolismo , Cristalização , Humanos , Indenos/química , Indenos/metabolismo , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Simulação de Acoplamento Molecular , Mutação , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Receptor 5-HT2C de Serotonina/química , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Curr Opin Struct Biol ; 51: 44-52, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29554543

RESUMO

G protein-coupled receptors mediate cell signaling and regulate the majority of sensory and physiological processes in the human body. Recent breakthroughs in cryo-electron microscopy and X-ray free electron lasers have accelerated structural studies of difficult-to-crystallize receptors and their signaling complexes, and have opened up new opportunities in understanding conformational dynamics and visualizing the process of receptor activation with unprecedented spatial and temporal resolution. Here, we summarize major milestones and challenges associated with the application of these techniques and outline future directions in their development with a focus on membrane protein structural biology.


Assuntos
Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Biológicos , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Relação Estrutura-Atividade
15.
Nat Protoc ; 13(2): 260-292, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29300389

RESUMO

Protein crystallography has significantly advanced in recent years, with in situ data collection, in which crystals are placed in the X-ray beam within their growth medium, being a major point of focus. In situ methods eliminate the need to harvest crystals, a previously unavoidable drawback, particularly for often small membrane-protein crystals. Here, we present a protocol for the high-throughput in situ X-ray screening of and data collection from soluble and membrane-protein crystals at room temperature (20-25°C) and under cryogenic conditions. The Mylar in situ method uses Mylar-based film sandwich plates that are inexpensive, easy to make, and compatible with automated imaging, and that show very low background scattering. They support crystallization in microbatch and vapor-diffusion modes, as well as in lipidic cubic phases (LCPs). A set of 3D-printed holders for differently sized patches of Mylar sandwich films makes the method robust and versatile, allows for storage and shipping of crystals, and enables automated mounting at synchrotrons, as well as goniometer-based screening and data collection. The protocol covers preparation of in situ plates and setup of crystallization trials; 3D printing and assembly of holders; opening of plates, isolation of film patches containing crystals, and loading them onto holders; basic screening and data-collection guidelines; and unloading of holders, as well as reuse and recycling of them. In situ plates are prepared and assembled in 1 h; holders are 3D-printed and assembled in ≤90 min; and an in situ plate is opened, and a film patch containing crystals is isolated and loaded onto a holder in 5 min.


Assuntos
Cristalografia por Raios X/métodos , Ensaios de Triagem em Larga Escala/métodos , Cristalização , Coleta de Dados , Ensaios de Triagem em Larga Escala/instrumentação , Lipídeos , Proteínas de Membrana/análise , Polietilenotereftalatos/química , Proteínas/química , Temperatura , Raios X
16.
IUCrJ ; 4(Pt 4): 439-454, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875031

RESUMO

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Šresolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.

17.
Trends Biochem Sci ; 42(9): 749-762, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28733116

RESUMO

X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs.


Assuntos
Cristalografia/métodos , Elétrons , Lasers , Substâncias Macromoleculares/química , Fatores de Tempo , Raios X
18.
Proc Natl Acad Sci U S A ; 114(31): 8223-8228, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716900

RESUMO

Monoclonal antibodies provide an attractive alternative to small-molecule therapies for a wide range of diseases. Given the importance of G protein-coupled receptors (GPCRs) as pharmaceutical targets, there has been an immense interest in developing therapeutic monoclonal antibodies that act on GPCRs. Here we present the 3.0-Å resolution structure of a complex between the human 5-hydroxytryptamine 2B (5-HT2B) receptor and an antibody Fab fragment bound to the extracellular side of the receptor, determined by serial femtosecond crystallography with an X-ray free-electron laser. The antibody binds to a 3D epitope of the receptor that includes all three extracellular loops. The 5-HT2B receptor is captured in a well-defined active-like state, most likely stabilized by the crystal lattice. The structure of the complex sheds light on the mechanism of selectivity in extracellular recognition of GPCRs by monoclonal antibodies.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Receptor 5-HT2B de Serotonina/química , Receptor 5-HT2B de Serotonina/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Ligação Competitiva , Domínio Catalítico , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Ergotamina/química , Ergotamina/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Conformação Proteica , Receptor 5-HT2B de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/química , Agonistas do Receptor de Serotonina/metabolismo
19.
Methods Mol Biol ; 1607: 117-141, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28573571

RESUMO

Membrane proteins are crucial components of cellular membranes and are responsible for a variety of physiological functions. The advent of new tools and technologies for structural biology of membrane proteins has led to a significant increase in the number of structures deposited to the Protein Data Bank during the past decade. This new knowledge has expanded our fundamental understanding of their mechanism of function and contributed to the drug-design efforts. In this chapter we discuss current approaches for membrane protein expression, solubilization, crystallization, and data collection. Additionally, we describe the protein quality-control assays that are often instrumental as a guideline for a shorter path toward the structure.


Assuntos
Cristalização/métodos , Cristalografia por Raios X/métodos , Proteínas de Membrana/ultraestrutura , Animais , Bactérias/química , Cristalografia por Raios X/instrumentação , Bases de Dados Factuais , Detergentes/química , Expressão Gênica , Insetos/química , Lipídeos/química , Mamíferos/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Modelos Moleculares , Propilaminas/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura
20.
Structure ; 25(7): 1111-1119.e3, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28648609

RESUMO

The nicotinamide nucleotide transhydrogenase (TH) is an integral membrane enzyme that uses the proton-motive force to drive hydride transfer from NADH to NADP+ in bacteria and eukaryotes. Here we solved a 2.2-Å crystal structure of the TH transmembrane domain (Thermus thermophilus) at pH 6.5. This structure exhibits conformational changes of helix positions from a previous structure solved at pH 8.5, and reveals internal water molecules interacting with residues implicated in proton translocation. Together with molecular dynamics simulations, we show that transient water flows across a narrow pore and a hydrophobic "dry" region in the middle of the membrane channel, with key residues His42α2 (chain A) being protonated and Thr214ß (chain B) displaying a conformational change, respectively, to gate the channel access to both cytoplasmic and periplasmic chambers. Mutation of Thr214ß to Ala deactivated the enzyme. These data provide new insights into the gating mechanism of proton translocation in TH.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , NADP Trans-Hidrogenases/química , Prótons , Membrana Celular/química , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Mutação , NAD/química , NAD/metabolismo , NADP/química , NADP/metabolismo , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Thermus thermophilus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...